Ma 2024 december 14. Szilárda napja van. Holnap Valér napja lesz.
lead-cropped-0.jpg

Bayer Zsolt: Hú bmeg! Válasszunk!

Flag

Szöveg méret

5
Átlag: 5 (1 szavazat)
Igen, igen, igen! Végre itt a bizonyíték...

, hogy a Momentum - miképpen a Jobbik is - 21. századi párt!

S hogy ez mit jelent? Mindjárt elolvashatják, megtekinthetik, kielemezhetik itt alant. Ez édes véreim azt jelenti, hogy egészen eddig úgy volt, hogy az ember fogta magát, aztán elment szavazni, és szavazott arra a pártra meg képviselőjelöltre, aki szimpatikus volt, akiben bízott, akinek hitt stb., stb.

No, ennek vége!

A 21. század beköszöntött, és ennek kétségbevonhatatlan jele, hogy a szavazás teljesen megváltozott.

Mostantól úgy szavazunk, hogy a Józsi bácsi először is beiratkozik az ELTE elméleti matematika szakára, azt elvégzi, PHD, szakmai gyakorlat, és így alkalmassá válik arra, hogy egy algoritmus szerint leadhassa voksát.

Ugyanis egy 21. századi szavazás nem egyszerű szavazás, hanem a Riemann-sejtés maga!

"A Riemann-sejtés, amelyet először ]]>Bernhard Riemann]]> fogalmazott meg 1859-ben, egyetlen számelméleti tárgyú dolgozatában, a ]]>Riemann-féle zéta-függvény]]> zérushelyeinek eloszlásával foglalkozik (és így a prímszámok lehető legegyenletesebb eloszlását állítja). Sokan (így például ]]>Erdős Pál]]> is), az egész matematika legfontosabb problémájának, koronagyémántjának tartják. Egyike a ]]>Hilbert-problémáknak]]>, és az egymillió dollárt érő ]]>millenniumi problémáknak]]> is. A legtöbb matematikus igaznak tartja, bár például ]]>John Edensor Littlewood]]> és ]]>Atle Selberg]]> hangoztatott kétségeket.

A Riemann-féle zéta-függvény ζ(s) egyváltozós, ]]>komplex számokon]]> értelmezett függvény, értelmezési tartománya a teljes komplex számsík, az s = 1 eset kivételével. Ha s>1 valós szám, akkor a ]]>konvergens]]>

zeta (s)=sum _{{n=1}}^{infty }{rac  {1}{n^{s}}}
zeta (s)=sum _{{n=1}}^{infty }{ rac {1}{n^{s}}}

sor állítja elő, ez még akkor is konvergens, ha s komplex, de valós része 1-nél nagyobb. Így például az ismert ]]>Euler]]>-féle formula miatt ζ(2)=π2/6. Ha s valós része nem 1-nél nagyobb, akkor analitikus folytatással kapjuk a függvény értékeit.

Vannak úgynevezett triviális gyökhelyei a negatív páros számokban, azaz az s = −2, s = −4, s = −6, … értékeknél. A Riemann-sejtés a nem triviális esetekkel foglalkozik, és kimondja:

A Riemann-féle ζ-függvény minden nem triviális gyökének a valós része 1/2.

Tehát a nemtriviális gyökök az 1/2 + it alakú számokból álló úgynevezett kritikus egyenesen vannak, ahol t ]]>valós szám]]> és i a ]]>képzetes egység]]>."

Na, és a képzetes egység a Momentum bazmeg. A 21. századi párt. Rájuk kell szavazni. 

Bayer Zsolt

Forrás: ]]>Bádog - Bayer Zsolt blogja]]>

HÍRLEVÉL FELIRATKOZÁS

Mindig naprakészen legfrissebb híreinkből!

Történelem (18) Mondom a magamét (8024) Életmód (1) Autómánia (61) Tv fotel (65) Mozi világ (440) Tereb (146) Gazdaság (722) Vetítő (30) Emberi kapcsolatok (36) Titkok és talányok (12) Kultúra (9) Sport (729) Nézőpont (1) Szépségápolás (15) Jobbegyenes (2896) Heti lámpás (340) Politika (1582) Egészség (50) Belföld (11) Alámerült atlantiszom (142) Irodalmi kávéház (543) Rejtőzködő magyarország (168) Mozaik (83) Nagyvilág (1310) Gasztronómia (539) Flag gondolja (38)
]]>eff]]>
]]>free speech]]>
]]>mti]]>